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3. Timeline:
Data sharing deadline June 15

4. Rationale:

EPA and DHA are established dietary factors in the reduction of CVD mortality and morbidity (Lee, 2009;
Mozaffarian, 2008; Mozaffarian, 2006; Albert, 1998; Siscovik, 1995), but achieving adequate dietary
intakes from fish sources may be challenging. Fish intake varies among US populations (Chung, 2008).
For example, Hispanic Americans consume less fish than European Americans or African Americans
(Anderson, 2010; Fitten, 2008), and the types of fish consumed also differ across populations (Nahab,
2011). Alpha linolenic acid (ALA) consumption may provide an alternative or complementary strategy to
fish for increasing tissue long chain PUFA, but ALA conversion to EPA is also highly variable, ranging
from 0.2% to 8% (Burdge, 2004). Sources of variability for ALA conversion to long chain fatty acids
include age, gender and intakes and/or ratios of other fatty acids, particularly linoleic acid (Wien, 2010;
Goyens, 2006; Burdge, 2006).

Genetic factors are an additional source of variability in determining tissue concentrations of long-chain
PUFA. Genetic modulators of plasma EPA, DPA and DHA that have been replicated across populations
may act by altering metabolic capacity for ALA conversion to long-chain PUFA (Tanaka, 2009; Baylin,
2007; Schaeffer, 2006). In the CHARGE GWAS for plasma n-3 fatty acids, plasma phospholipid ALA
interacted with FADS2 genotype for plasma EPA, suggesting that interindividual variability in plasma
long-chain PUFA may depend on both desaturase variants and ALA availability (unpublished data).
Minor allele frequencies (MAF) of selected highly significant SNPs based on the CHARGE GWAS results
appear to differ by ethnic group. For example, MAF for FADS1 SNP rs174548 was 0.20 in African
Americans, 0.29 in European Americans, and 0.52 in Hispanic Americans. For ELOVL2 rs3734398,
another highly significant SNP for long-chain PUFA, MAF was 0.42 in European Americans, 0.25 in
African Americans and 0.92 in Chinese Americans.

Ethnically-based variability in allelic frequency of loci associated with plasma EPA and DHA suggests that
population subgroups may require different PUFA intakes in order to achieve optimal tissue
concentrations and cardio-protective benefits. Genetic susceptibility to lower plasma EPA or DHA may be
either further exacerbated or, alternatively, ameliorated by dietary factors. Evaluation of the relationships
between diet and genotype for plasma long-chain PUFA, may inform optimal dietary approaches with
important implications for public health, and which are unexplored in majority and minority populations.

References on rage 5
5.  Main Hypothesis/Study Questions:
The proposed project will evaluate interactions between selected dietary fatty acids and SNPs
demonstrated to modulate plasma n-3 PUFA (ALA, EPA, DPA and DHA). We hypothesize that plasma
fatty acids will be related to dietary intakes, but also that dietary fatty acids will interact with genetic
variants which encode proteins that metabolize fatty acids. For example, we hypothesize that plasma
ALA will reflect ALA intake, but that genes encoding enzymes which metabolize ALA (such as FADS1,
fatty acid desaturase 1) will modify this association. These relationships are likely to be similar in
principle for the longer-chain n-3 (EPA, DPA and DHA), but individual fatty acids which compete for the
same enzyme (ALA and linoleic acid) may interact differentially with specific variants.

The analysis will begin in Whites. Other ethnic populations (European Americans, Hispanic Americans,
African Americans, and Chinese Americans) will be evaluated following analysis of GWAS data in these
groups for plasma n-3 outcomes.



6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of
interest with specific reference to the time of their collection, summary of data analysis,
and any anticipated methodologic limitations or challenges if present).

STUDY POPULATION:
MN Sample: Participants (n=3,793) with fatty acid data and genomic data.

EXCLUSIONS:
Individuals whose dietary data failed QC (e.g., extreme energy intake reporters)
Individuals taking EPA+DHA supplements

ENVIRONMENTAL EXPOSURES: (Associations and Interactors)
Alpha linolenic acid (ALA, g/day)
Linoleic acid (LA, g/day)
Polyunsaturated fatty acids (PUFA, g/day)
EPA+DHA (g/day)

For interaction testing, intake of each fatty acid (ALA, LA, PUFA and EPA+DHA), will be modeled as a
categorical variable (dichotomized into high and low based on population median intake) and also as a
continuous variable. For association testing, only continuous evaluations are needed.

**Categorical definitions for each fatty acids: Low is defined as < population median intake and high is
defined as > population median intake. Please code low as 0 and high as 1 for evaluation of fatty acids as
categorical variables.

GENETIC EXPOSURE:
SNPs PROPOSED FOR ANALYSIS
No. CLOSEST SNP chromosome Associated outcome
GENE
1 Cl1lorf10 rs174538 11 ALA,EPA,DHA
2 ELOVL2 rs3734398 6 ALA,EPA,DPA,DHA
3 ELOVL2 rs3798713 6 EPA,DHA
4 PDXDC1 rs4985167 16 ALA
5 GCKR rs780094 2 ALA,EPA,DPA,DHA
6 AGPAT3 rs7435 21 DPA
7 FADS1 rs174548 11 ALA,EPA,DPA,DHA
OUTCOMES:

Plasma ALA, EPA, DPA, DHA

ASSOCIATIONS (MAIN EFFECTS) TESTING:
A regression coefficient (B+SE) for the main effects term for fatty acids will be calculated in each cohort
and values meta-analyzed for each ethnic group. Associations will be tested continuously.

MODEL COVARIATES FOR ASSOCIATIONS (MAIN EFFECTS OF FATTY ACIDS)

Model 1: sex, age (continuous years), total energy intake (continuous kcal), cohort-specific
population substructure variables (this could include field center and also principal components-
based variables reflecting population sub-structure)




INTERACTION TESTING:

A regression coefficient (B+SE) for the interaction term for dietary fatty acids*SNP will be calculated in
each cohort and values meta-analyzed for each ethnic group. Initial phase is limited to whites, and will
be extended to other ethnic groups as these data become available. Interactions will be tested
continuously and categorically.

MODEL COVARIATES FOR INTERACTIONS (SNP*FATTY ACIDS)

Model 1: sex, age (continuous years), total energy intake (continuous kcal), cohort-specific
population substructure variables as needed (this could include field center and also principal-
components-based variables reflecting population sub-structure as needed)

We will also consider adding ALA as an additional covariate when examining the outcome of
plasma n-3.
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